
NASA Contractor Report 189699

//,,':/

Formal Representation of the Requirements
for an Advanced Subsonic Civil Transport
(ASCT) Flight Control System

Deborah Frincke
Dave Wolber

Gene Fisher

California Polytechnic State University
San Luis Obispo, California

G. C. Cohen

Boeing Defense & Space Group

Seattle, Washington

NASA Contract NAS1-18586

November 1992

lU/ A
National Aeronauticsand

Space Administration

Langley Research Center
Hampton, Virginia 23665-5525

(_IASA-C_-I_9o99) Fn_MAL

EEPRESLNTATION OF IHE REQUIREMENTS

'? AN AUVANCFO SUBSSNIC CIVIL

T_A,,_S_T (A_CT) FLIGHT CqNTROL

_Y_TL_ (_oein 9 Co.) _6 p

N9_-123_6

Unclas

63/60 01272_0

Preface

This document was generated in support of NASA contract NAS1-18586, Design and

Validation of Digital Flight Control Systems Suitable for Fly-By-Wire Applications, Task

Assignment 7. Task 7 is associated with formal representation of requirements.

This document describes a partial requirements specification for an Advanced Subsonic

Civil Transport (ASCT) Flight Control System. The example has been adopted from

requirements given in NASA Contractor report NAS1-187526, October 1991, G. C.

Cohen and R. E. MeLees, authors. The language used to describe the requirements,

Requirements Specification Language (RSL), is described in a companion document.

The NASA technical monitor for this work is Sally C. Johnson of the NASA Langley

Research Center, Hampton, Virginia.

The work was accomplished at Boeing Defense & Space Group, Seattle, Washington, and

at the California Polytechnic State University, San Luis Obispo, California. Personnel

responsible for the work include:

Boeing Military Airplanes:

D. Gangsaas, Responsible Manager

T. M. Richardson, Program Manager

Boeing High Technology Center:

Gerald C. Cohen, Principal Investigator

California Polytechnic State University

Dr. Gene Fisher

Deborah Frincke, Ph.D. candidate

Dave Wolber, Ph.D. candidate

ii

Section

TABLE OF CONTENTS

1.0 Introduction

2.0 RSL Dcf'mition of ASCT

Appendix A: RSL Example of Advanced Subsonic

Civil Transport Flight Control System 2

References 42

PRECEDING PAGE BLANK NOT FILMED

iii
t

t

iv

1. Introduction

This document is the second in a two-part collection that describes a general-purpose

Requirements Specification Language, RSL. The RSL language and supporting toolset are

described in detail in Reference 1. Presented here is an extended example of RSL use. The

example is a partial requirements specification for an Advanced Subsonic Civil

transport (ASCT) Fight Control System. The example has been adapted from requirements

given in a NASA Contractor report (Reference 2).

It is important to note that large examples such as this should be viewed using the

computer-based RSL browsing tools. These tools are described in a companion document.

The sequential text form of the Example presented here is the formal base specification that

is input to the RSL browsers. While it is possible to read the specification sequentially, it

is intended to be viewed online via the browsers.

When using the RSL browsers, a number of indices arc available to facilitate "navigation"

through a large specification. The browsers also support hypertcxt linking and graphical

views of a specification. The current implementation of the browsing tools does not

provide the means to generate the indices in a textual form suitable for inclusion in a hard-

copy document. Hence, the textual form of the example that follows does not include the

online browser indices, or any of the hypcrtext or graphical information that is available

online.

2. RSL Definition ASCT

The text of the requirements specification is given in Appendix A.

':._ EI,_A,,JKNOT FILMED

Appendix A: Formal Requirments Specification

Requirements Speci_cation for an

Advanced Subsonic Civil Transport (ASCT)

Fight Control System

Adapted from requirments given in NASA Contract report NASI-18586,

August 1989, G. C. Cohen and R E. McLees authors.

(referred to subsequently to as "ASCTI")

* The speci_cation is organized into the following modules:

* FlyMission, Crew, Aircraft, Navigate, ControlMissionFlight,

* ControlAerodynamicBraking, ControlLiftConfiguration,

* ControlPitch, FlightControlSystemPitchFunctions,

* ControlRoll, FlightControlSystemRollFunctions,

* ControlYaw, FlightControlSystemYawFunctions,

* FlightControlSystem

* FlyMission is the top-level module of the system. It is derived from the

* material on ASCTI pages 9-15.

module FlyMission; (* from pg 13 *)

import Navigate, ControlMissionFlight;

export Mission, TargetFlightPath, ActualFlightPath, ExternalForcesOnActuator;

(*** These three _eld de_nitions are from Table 1 on page 15. ***)

de,he object attribute control_action, driver, control_system_requirement;

object Mission is

components: TaxiInOut and TakeOff and Climb and Cruise

and Descent and Approach and Landing and AltitudeRange

and MissionState;

operations:

Navigate: (Mission) -> (TargetFlightPlan);

(* There should be additional operations that are not explicitly

speci_ed in ASCTI.*)

description: (*

De_nition of particular _ight mission from which the target _ight path

can be generated (ASCTI pg. 13). A Mission is the main object of the

ASCTI Flight Control System. Its _rst seven components represent each

of the main segments of a controlled _ight (ASCTI pg. 15). The last two

components represent the altitudes that may be attained during a mission

(from 0 to MaxAltitude) and the global states of the mission.*)

2

end Mission;

object MissionState is

components:

OP: OperatingProcedures,

FP: FlightPlan,

FE: FlightEnvelope;

operations: ;

description: (* *) ;

end MissionState;

(***** Mission Segments (pg. 15) *****)

object class MissionSegment is

components: AltitudeRange;

description: (*

A generic mission phase. Only identi_ed component from ASCTI is

altitude range, but presumably there should be more. *);

end MissionSegment;

object TaxiInTaxiOut instance of MissionSegment is

components: MoveFromTerminalPhase and AltitudeRange;

operations: ;

control_action: (* Move from passenger terminal to runway. *);

(driver:) (* Terrain and obstacle avoidance. *)

{control_system_requirement:} (*Speed control, nosewheel steering.*)

end TaxiInTaxiOut;

object TakeOff instance of MissionSegment is

components: RunwayAcceleration and RunwayDeparture and AltitudeRange;

operations:

AccelerateToTakeOff: (AircraftState, SpeedControls) -> (AircraftState),

DepartRunway: (AircraftState, LiftOffControls) -> (AircraftState);

control_action:

(* Accelerate to takeoff speed and depart runway. *)

(driver:)

(* Runway length, thrust limits, crosswind conditions *)

(control_system_requirement:)

(* Set height lift, set takeoff trim, thrust setting, nosewheel steering,

engine out augmentation, on ground braking, stall angle of atack warning,

manual trajectory control *)

end TakeOff;

object ClimbOutAndClimb instance of MissionSegment is

components: ClimbOut and ClimbToAltitude;

control_action:

(* Ascend to cruise altitude< and speed.*)

(driver:)

(* Time constraint, fuel consumption, ease pilot workload, ride quality *)

(control_system_requirement:)

(* Thrust setting, manual trajectory control, auto trajectory control,

manual and auto trim envelope protection, auto control limiting, lift

con_g. *)

end ClimbOutAndClimb;

object Cruise instance of MissionSegment is

components: ;

operations: ;

control_action:

(* Cruise. *);

driver:

(* Ease pilot workload, fuel consumption, minimize drag, ride quality. *);

control_system__requirement:

(* Speed control, manual trajectory control, auto trajectory control,

manual an auto trim, envelope protection, auto control limiting, lift

control. *);

end Cruise;

object DescentAndApproach instance of MissionSegment is

components: Descent and Approach;

control_action:

(* *);

driver:

(* Ease pilot workload, ride quality, crosswind conditions, all weather

approaches, tight path following. *);

control_system_requirement: (* *);

(* Speed control, manual trajectory control, auto trajectory control,

manual and auto trim, envelope protection, auto control limiting, lift

control. *);

end DescentAndApproach;

object Landing instance of MissionSegment is

components: Deceleration and Touchdown ;

control_action:

(* Flare, touchdown and decelerate to taxi speed. *);

driver:

(* Runway length, crosswind conditions, rapid speed change, tight path

following all weather landings, ease pilot workload. *);

control_system_requirement:

(* Speed control, manual trajectory control, auto trajectory control,

envelope protection, auto control limiting, lift control, stall angle of

atack warning. *);

end Landing;

object MissedApproach instance of MissionSegment is

(control_action:)

{driver:)

(* Rapid thrust change; quick, hard maneuvers. *)

{control_system_requirement:)

(* Terrain and obstacle avoidance, wind shears, ride quality. *)

description: (*

Thrust control, manual trajectory control, envelope protection, lift

control, engine out augmentation, stall angle of attack *);

end MissedApproach;

object class FlightPath is

components: Direction, Angle, (*...*)

operations: ;

description: (* *);

end FlightPath;

4

object ActualFlightPath instance of FlightPath is

components: (*Inherited from FlightPath.*);

description: (*

The sensed 4 dimensional _ight path and attitudes of the aircraft as

well as any other sensed values necessary to satisfy the control

requirements. (See page 13.) *);

end ActualFlightPath;

object TargetFlightPath instance of FlightPath is

components: ;

description: (*

The desired 4 dimensional Hight path and attitudes generated by some

navigation function. (See page 13.) *);

end TargetFlightPath;

object AircraftAttitudes is

components: Pitch, Roll, Heading;

description: (*

Aircraft pitch, roll and heading attitudes.

end AircraftAttitudes;

(See page 13.) *) ;

(*** External forces object. Referenced in ASCTI, but not thoroughly

de_ned there. See translation notes for further discussion. ***)

object class ExternalForcesOnActuator is

components: ;

operations: ;

description: (* ;

All forces (in particular environmental forces) other than the actuation

forces acting on the aerodynamic braking and roll actuation system.*);

end ExternalForcesOnActuator;

(* C.M.F.2 *)

operation EvaluateHandlingQualities is

components : ;

inputs: a: Aircraft, m: Mission;

outputs: PilotRating;

{agent:} (* Pilot *)

precond : m. State. FlightEnvelope = Normal ;

postcond : ;

description: (* *) ;

end EvaluateHandlingQualities ;

operation MinimumAugmentation is

inputs: A: Aircraft;

outputs: ;

description: (* *);

end MinimumAugmentation;

var t: Time;

m: Mission;

a: Aircraft;

H: FailureLevel;

ef: ExternalForce;

axiom

if (exists (t: Time, m: Mission, a: Aircraft)

(m.Time= t and a.State.HandlingQuality = Degraded))
then m.State = IsDegraded(m);

axiom
if (forall (_: FailureLevel, a: Aircraft)

Probability(_) < 1.0"10^-9 and a.State.Mode = CoreControl)

then MinimumAugmentation(a);

(* An "external forces" axiom that states that external forces exist that

cause anomalous conditions to arise, e.g., degraded handling quality. *)

exists (ef: ExternalForce)

exists (t: Time)

if m.Time = t then a. State.HandlingQuality = Degraded;

end FlyMission;

* Module Crew contains material gleaned from throughout the ASCTI

* speci_cation. Pp. 196-196 contain very brief object descriptions of the

* Crew, but no details.

module Crew;

object class CrewMember is

components: Name, SkillLevel, StrengthLevel;

description: (*

Class of crew members *);

end CrewMember;

object Pilot instance of CrewMember is

components: PilotClassi_cation;

description: (*

The pilot of the mission *);

end Pilot;

object CoPilot instance of CrewMember is

components: PilotClassi_cation;

description: (*

The copilot of the mission *);

end CoPilot;

object SkillLevel is number;

object StrengthLevel is number;

object MissionControlSystem is

components: (*...*) ;

description: (*

The onboard computer support system. Used as agent of operation where

appropriate (i.e., in operations that are performed automatically versus

manually). *);

end MissionControlSystem;

operation PerformPilotFunctions is

components: ;

inputs: PFPCFF: PilotFlightPathCommandFeelForce;

6

outputs: PLTF: PilotLongitudinalTrimForce,

PFPCF: PilotFlightPathCommandForce;

description: (*

The functions performed by the pilot. *);

end PerformPilotFunctions;

operation PerformCopilotFunctions is

components: ;

inputs: CopilotFlightPathCommandFeelForce (* ... *);

outputs: CopilotLongitudinalTrimForce, CopilotFlightPathCommandForce

(* ... *);
(* The functions performed by the copilot. *);

end PerformCopilotFunctions;

end Crew;

* Module Aircraft contains material gleaned from throughout the ASCTI

* speci_cation. Pp. 194-197 contain brief object descriptions of the

* Aircraft, but few details.

module Aircraft;

object Aircraft is

components: State, Structure, MajorSystems, Attitudes, (* ... *);

operations: ;

description: (* *);

end Aircraft;

object AircraftState is

components:

MCM: ManualControlMode, (* The two modes bof aircraft control, q.v. *)

HQ: HandlingQuality,

NWP: NoseWheelPosition,

LEWP: LeadingEdgeWingPosition,

TEWP: TrailingEdgeWingPosition;

(* *)

operations: (* Many *);

description: (*

The top-level repository for all aircraft state information. Note that

any explicit de_nition of this object is conspicuously missing from

ASCTI. *)

end AircraftState;

(* object AircraftState is Aircraft.State; *)

(* Simple naming macro for ASCTI consistency -- DISCONTINUED SYNTAX *)

object NosewheelPosition is (* pg. 88 *)

components: ;

operations: ;

description: (*

Angular position of the nosewheel used for on ground low speed heading

control. *);

end NosewheelPosition;

object AircraftStructure is
components: Engine*, EngineSupport*, PropellerShaft*, HighLiftDevices

(* ... *);
description: (*

The structural componentsof the aircraft. Note that only those
componentsthat appear in the requirements are listed here. A full
structural decomposition of the aircraft should be done in a complete
structures module, and would of course be very detailed. *);

end AircraftStructure;

object class StructuralElement is

components: HowMounted, WhereMounted;

operations: ;

description: (* *);

end StructuralElement;

object Engine instance of StructuralElement is

components: EngineThrust (* ... *) ;

description: (*

The aircraft engine *);

end Engine;

object EngineThrust is (*** See ASCTI pg. 88. ***)

components: ;

operations: ;

description: (*

Thrust measurement; *)

end EngineThrust;

(* obj EnginesThrust is Engine.Thrust; *)

(* Simple naming macro for ASCTI consistency -- DISCONTINUED SYNTAX *)

object HighLiftDevices is

components: LeadingEdgeFlap*, TrailingEdgeFlap*;

description: (* *);

end HighLiftDevices;

object HowMounted is

components: Location (* ... *);

operations: ;

description: (* *);

end HowMounted;

object HowMountedLocation is

components: External or Internal;

end HowMountedLocation;

object External = "External';

object Internal = "Internal';

(* Major Aircraft Systems (ASCTI pg. 196 and elsewhere). In a full spec,

each component here should undoubtedly be represented in a separate module.*)

object MajorSystems is

components:SensorSystem,PilotControlSystem, PropulsionSystem,
AirframeSystem, AutoFlightSystem;

operations: ;
description: (* *);

end MajorSystems;

(*Note that this should certainly be integrated with as a MajorSystems
component,but it appears as an isolated object in ASCTI.*)

object Autopilot is
components: ;

description: (*

The autopilot control unit. *)

end Autopilot;

(* Flight Modes and Commands *)

object class Mode is

components: ;

operations: ;

description: (*

A generic _ight mode; specializations follow. *);

end Mode;

object class Command is

components: ;

operations: ;

description: (*

A generic _ight command. Note that the component structure of a command

is is not precisely clear from the various appearances of the term

J'command'' throughout ASCTI. This should be corrected. *)

end Command;

(* Mode Specializations *)

object ManualFlightMode instance of Mode is

components: Angle;

operations: ;

description: (*

Appears on ASCTI pg. 129; no textual description given. *)

end ManualFlightMode;

object AutoFlightMode is

components: ;

operations: ;

description: (* ;

Appears on ASCTI pg. 129; no textual description given. *)

end AutoFlightMode;

(* Command Specializations *)

object ManualFlightPathCommand instance of Command is

components: Angle;

operations: ProvideLongitudinalEnvelopeProtection,

GenerateFlightPathCommand, GenerateFlightPathCmdManual;

description: (*

Flight path angle command generated manually (i.e., by the crew) *);

end ManualFlightPathCommand;

object AutoFlightPathCommandinstance of Commandis
components:Angle;
operations: ;
description: (*

Flight path commandgenerated in an automated fashion (i.e., by a

computer system) *);

end AutoFlightPathCommand;

end Aircraft;

* Module Navigate is largely a place holder for information that is outside of

* the speci_c focus of this document, but which should be represented

* formally in some form in a complete document. Pages 12 and 13 are the only

* explicit mention of a Navigate function in ASCTI.

module Navigate;

(* Evidently outside of the scope of this spec *)

operation Navigate is

components: ;

inputs: Mission;

outputs: TargetFlightPath;

description: (*

Generates the target _ight path based on the particular mission

requirements and anticipated and sensed environmental conditions. *);

end Navigate;

end Navigate;

* Module ControlMissionFlight is contains the top-level functional components

* of the system, de_ned on pp. 17-89 of ASCTI.

module ControlMissionFlight;

from FlyMission import ActualFlightPath, TargetFlightPath,

ExternalForcesOnActuator, AircraftAttitudes;

from Mission import MissionState;

from Aircraft import AircraftState, EnginesThrust;

from ControlYaw import ExternalForcesOnYawActuator,

DisplayedDirectionalTrimPos;

from ControlAerodynamicBraking import DisplayedInflightBrakePos;

from ControlPitch import DisplayedLongitudinalTrimPosition,

ExternalForcesOnPitchActuator, StallAngleOfAttackWarning;

from ControlRoll import DisplayedRollTrimPosition;

from ControlLiftCon_guration import DisplayedCon_gAndFailureStatus;

de_ne attribute CMFI;

de_ne attribute CMF2;

de_ne attribute CMF3;

de_ne attribute CMF4;

(* General Control Requirements *)

(* Handling Qualities *)

(* Operational Flight Envelope *)

(* Manual and Automatic Trim Functions *)

I0

de_ne attribute CMF5;

de_ne attribute CMY6;

de_ne attribute CMF7;

de_ne attribute CMF8;

de_ne attribute CMF9;

de_ne attribute CMFI0;

de_ne attribute CMFII;

de_ne attribute CMFI2;

de_ne attribute CMFI3;

de_ne attribute CMFI4;

de_ne attribute CMFI5;

de_ne attribute CMFI6;

de_ne attribute CMFI7;

de_ne attribute CMFI8;

de_ne attribute CMFI9;

de_ne attribute CMF20;

de_ne attribute CMF21;

defune attribute CMF22;

de_ne attribute CMF23;

de_ne attribute CMF24;

de_ne attribute CMF25;

de_ne attribute CMF26;

* Envelope protection *)

* Autopilot Limiting and Actuation *)

* Maneuver Control Lags *)

* Requirements in Icing Conditions *)

* Control System Stability Requirement *)

* Residual Oscillations *)

* Longitudinal Control Power Requirements *)

* Longitudinal Trim Authority *)

* Enhanced Longitudinal Control Maneuver Response *)

* Roll Mode Time Constant *)

* Pilot-Induced Oscillations *)

* Stall Characteristics *)

* Lateral Control Power Requirements *)

* Roll Response Linearity *)

* Roll Control Cross Coupling *)

* Lateral Trim Authority *)

* Enhanced Roll Maneuver Control *)

* Dynamic Stability *)

* Turn Coordination *)

* Directional Control Power Requirements *)

* Directional Trim Authority *)

* Flutter Prevention Requirements *)

operation ControlMissionFlight is (* pp. 13, 87 *)

components: ControlThrust, ControlPitch, ControlRoll, ControlYaw,

ControlHeadingOnGround, ControlAerodynamicBraking,

ControlBrakingOnGround, ControlLiftCon_g, UpdateAircraftState;

inputs: TargetFlightPath, ExternalForcesOnActuator,

ExternalForcesOnYawActuator, ExternalForcesOnPitchActuator,

EnginesThrust;

outputs: DisplayedLongitudinalTrimPosition, StallAngleOfAttackWarning,

DisplayedRollTrimPospition, DisplayedDirectionalTrimPos,

AircraftAttitudes, ActualFlightPath, DisplayedIn_ightBrakePos,

DisplayedCon_gAndFailureStatus;

description: (*

Receives a target hight path (generated by navigation) and generates

control signals for the actuation systems which generate the forces and

moments to control the aircraft attitudes to generate a _ight path which

matches the target Bight path. *)

end ControlMissionFlight;

(* General Remarks:

DSBP: la

Means shall be provided to indicate to the Bight crew the position of the

speed brake system.

DSBP: ib

Annunciation of failures or system operation which could result in an

unsafe condition if the crew were not aware of the condition shall be

provided (FAR 25..672a)

DSBP: ic

Annunciation to the crew (in the form of an aural warning) shall be

provided for speedbrake deployment or the following condition: take-off

power and airplane on ground. (FAR 25.703a)

l!

*)

(** The following are atomic component operations of ControlMissionFlight.

The remaining component operations are at the head of their respective

modules. ***)

operation ControlThrust is

inputs: (* Note that there should probably be inputs here. *);

outputs: ThrustVectorActuatorCon_guration;

description: (*

No description in ASCTI *);

end ControlThrust;

operation ControlHeadingOnGround is

components: ;

inputs: (* Ibid. *);

outputs: NosewheelPosition;

description: (*

No description in ASCTI. Note also that lack of inputs is suspicious *);

end ControlHeadingOnGround;

operation ControlBrakingOnGround is

components: ;

inputs: (* Ibid.*);

outputs: WhellBrakingPosition;

description: (*

No description in ASCTI. Note also that lack of inputs is suspicious *);

end ControlBrakingOnGround;

(*** Organizationally, this operation would probably better be included in

the Aircraft module. It is here to maintain some lexical correspondence

with ASCTI. ***)

operation UpdateAircraftState is

components: ;

inputs: ThrustVectorActuatorCon_guration, PitchActuatorPosition,

RollActuatorPosition, YawActuatorPosition, NosewheelPosition,

DragActuatorPosition, WheelBrakePosition, LiftCon/%g, AircraftState;

outputs: AircraftAttitudes, ActualFlightPath, AircraftState;

description: (*

Includes the airframe and the _ight environment and outputs the aircraft

_ight state as a result of the Bight state and the con_guration of the

_ight control system. Note: this appears to be a rather imprecise

description; furthermore, inputs and outputs are not clearly speci_ed.

See translation notes for further discussion. *);

end UpdateAircraftState;

(*** The following are atomic operations of Control Mission Flight, from pp.

87-88 of ASCTI. Global non-atomic operations, such as AircraftState,

ActualFlightPath, and TargetFlightPath are de_ned in appropriate major

object modules. Local objects that belong to functions de_ned in other

modules, such as PitchActuatorPosition, are de_ned in the appropriate

operation modules. Use the browser to and their deflnitions. ***)

object ThrustVectorActuatorCon_guration is

components: ;

operations: ;

description: (*

12

Con_guration of the system which controls the magnitude and direction of

the thrust vector.*);

end ThrustVectorActuatorCon_guration;

(*** General Control Requirements (C.M.F.I), Pg. 18: Two modes of manual

control shall be provided: core control and enhanced control. ***)

object ManualControlMode is

components: CoreControl or EnhancedControl;

description: (*

The core control mode provides the minimum level of augmentation (e.g.,

yaw damper, Mach trim, etc.) required by FAA certi_cation at all failure

levels not extremely improbable (probability < 1.0E-9). *)

end ManualControlMode;

(*** Pg. 18: Transfer between core and enhanced control modes. ***)

operation TransferControlMode is

inputs: AS: AircraftState;

outputs: AS': AircraftState;

postcond: if AS.ManualControlMode = CoreControl

then AS'.ManualControlMode = EnhancedControl;

{agent: Crew or AutoControlUnit)

end TransferControlMode;

object CoreControl = "CoreControl";

object EnhancedControl = "EnhancedControl';

object HandlingQuality is

components: Normal or Degraded;

end HandlingQuality;

object Normal = "Normal';

object Degraded = "Degraded";

end ControlMissionFlight;

* Module ControlAerodynamicBraking from pp. 90-107

module ControlAerodynamicBraking;

from FlyMission import TargetFlightPath, ActualFlightPath,

ExternalForcesOnActuator;

de_ne operation attribute CAB1, CABIa, CABIb, CABIc, CABId,

CAB2, CAB2a, CAB2b;

operation ControlAerodynamicBraking is (*** pg. 88, 105-107 ***)

components:

GenerateManualBrakeCommand, GenerateAutoBrakeCommand,

DisplaySpeedBrakePos, MoveDragActuator, ProvideCrewBrakingInterface,

GenerateDragActuatorCommand;

inputs: TargetFlightPath, ExternalForcessOnActuator, ActualFlightPath;

(* NOTE: Inconsistency in outputs from ControlAerodynamicBraking between

13

pages 87 versus 105. *)

outputs: DragActuatorPosition, DisplayedIn_ightBrakePos,

DragActuatorDisplacement;

description: (*

Controls drag and lift dumping to provide and aerodynamic braking

capability. *);

CAB1: (* (pg. 90)

Manual and automatic control of aerodynamic braking shall be available.

Manual control shall be able to override the automatic control function.

Aerodynamic speed brake control function shall be available

for on-ground and in-Bight operation. *);

CABIa: (* 1.0 Ground Speed Brake Control

Ground speedbrake control shall provide ground deceleration capability

consistent with operational _eld landing length requirements.*)

(* See predicates on DecelerateOnGround operation. *);

CABIb: (* 1.2.0a InSight Speed Brake Control

The insight speed brake actuators shall be sized to give adequate

insight de_ection at Vmo/Mmo for emergency descent.*);

(*
SpeedBrakeAcutators.Size = AdequateIn_ightDe_ection(Vmo, Mno)*)

CABIc: (* 1.2.0b InSight Speed Brake Control

Normal descent speed brake requirements shall not cause objectionable

horizontal tail buffet of engine Bow distortion (FAR 25.251b) *);

(* See predicates on Descend and OperateEngine operations. *)

CABId: (*1.2.0c CAB 2.0c Inflight Speed Brake Control

Control forces to trim the pitching moment change shall be less

than or equal to those required by FAR 25.143(b)*);

(* axiom

Pitching.Moment.ControlForces <= FAR25_I43_b; *)

(* Note that reference to FAR functions assumes there de_nition

* elsewhere. *)

CAB2a: (* Aerodynamic Braking Function Availability Requirements *);

CAB2a: (*

Each individual speed brake device shall provide fail-passive control for

failure modes more probable than 10-7/_t hour. *);

CAB2b: (*

Loss of all speedbrake control shall be less than 10-7/_t hour. *);

end ControlAerodynamicBraking;

operation GenerateManualBrakeCommand is

components: ;

inputs: TargetFlightPath, ActualFlightPath;

outputs: CrewBrakeForce;

[agent: Crew;)

description: (*

Generates the speedbrake command manually (i.e., by the crew). *)

end GenerateManualBrakeCommand;

14

operation GenerateAutoBrakeCommand is

components: ;

inputs: TargetFlightPath, ActualFlightPath;

outputs: AutoBrakeCommand;

(agent: FlightControlSystem;)

description: (*

Involves generation of the speedbrake command in an automated fashion *);

end GenerateAutoBrakeCommand;

operation DisplaySpeedBrakePos is

components: ;

inputs: DragActuatorDisplacement;

outputs: DisplayedIn_ightBrakePos;

description: (* *);

(* Indicates to the Bight crew the position of the speedbrake system and

annunciates unsafe speedbrake positions and unsafe failures. *)

end DisplaySpeedBrakePos;

operation MoveDragActuator is

components: ;

inputs: DesiredDragActuatorPosition, ExternalForcesOnActuator;

outputs: DragActuatorDisplacement;

description: (*

Moves the position of the system which provides the aerodynamic braking

and lift dumping capability (spoiler/speedbrakes) *);

end MoveDragActuator;

operation ProvideCrewBrakingInterface is

components: ;

inputs: CrewBrakeForce;

outputs: ManualBrakeCommand;

description: (*

Converts the force exerted by the crew into an aerodynamic braking

command. *);

end ProvideCrewBrakingInterface;

operation GenerateDragActuatorCommand is

components: ;

inputs: ManualBrakeCommand, AutoBrakeCommand;

outputs: DesiredDragActuatorPosition;

description: (*

Generates a drag actuator command based on the manual and auto braking

commands. *) ;

end GenerateDragActuatorCommand;

object DragActuatorPosition is (* pg. 88 *)

operations: ControlAerodynamicBraking, UpdateAircraftState;

description: (*

Position of the system used to generate drag used for in air and on

ground aerodynamic braking. *);

end DragActuatorPosition;

object DisplayedIn_ightBrakePos is (* pg 106 *)

operations: ControlMissionFlight, ControlAerodynamicBraking,

DisplaySpeedBrakePos;

description: (*

15

Indication to the crew of the speedbreak position and status. *);

end DisplayedIn_ightBrakePos;

object DragActuatorDisplacement is (* pg. 106 *)

operations: ControlAerodynamicBraking, DisplaySpeedBrakePos,

MoveDragActuator;

description: (*

Displacement of the drag actuators (i.e., the speedbrakes). *);

end DragActuatorDisplacement;

object AutoBrakeCommand is (* pg. 106 *)

operations: GenerateAutoBrakeCommand, GenerateDragActuatorCommand;

description: (*

The automatically (non-manual) generated aerodynamic braking command. *);

end AutoBrakeCommand;

object CrewBrakeForce is (* pg. 106 *)

operations: GenerateManualBrakeCommand, ProvideCrewBrakingInterface;

description: (*

Force exerted by crew (pilot or copilot) on the aerodynamic braking

controller. *);

(* NOTE: some reconciliation with the Crew module should be

made for this and other crew-related objects. *);

end CrewBrakeForce;

object DesiredDragActuatorPosition is (* pg. 106 *)

operations: MoveDragActuator, GenerateDragActuatorCommand;

description: (*

The commanded rage actuator position. *);

end DesiredDragActuatorPosition;

object ManualBrakeCommand is (* pg. 106 *)

operations: ProvideCrewBrakingInterface, GenerateDragActuatorCommand;

description: (*

The speedbrake command generated as a result of the crew exerting a force

on the controller. *);

end ManualBrakeCommand;

end ControlAerodynamicBraking;

* Module ControlLiftCon_guration from pp. 92-119

module ControlLiftCon_guration;

from FlyMission import TargetFlightPath, ActualFlightPath;

de_ne operation attribute CLC;

operation ControlLiftCon_g is

components: ;

inputs: TargetFlightPath, ActualFlightPath;

outputs: DisplayedCon_gAndFailureStatus, LiftCon_g;

description:

(* Con_gures the wing for different lift properties such that required

16

lift and control is achieved at low speed (takeoff and landing) and low

drag an be achieved at high speeds. *);

CLC: (* 1

The wing high lift design (both leading edge and trailing edge devices)

shall be adjustable to provide a variable lift capability to ensure the

achievement of low speeds performance requirements coupled with certi_able

handling characteristics. Manual and automatic system operation shall be

provided. High lift device position indication and failure status shall be

available.*);

CLC: (*2 p. 93. Lift con_guration control function availability

requirements. The high lift system shall provide the following functional

availability (function, probability of loss of function

(LE and TE Control, 10-7)

(LE Control, 10-6)

(TE Control, 10-6)

(Autoslat, 10-5)

(Flap load relief, 10-5)

(LE and TE Failure annunciation, 10-5)

(LE Control and LE Failure annunciation, 10-9)

(TE Control and TE Failure annunciation, 10-9)*);

end ControlLiftCon_g;

operation GenerateMaualCon_gCmd is

components: ;

inputs: TargetFlightPath, ActualFlightPath;

outputs: CrewCon_gCmdForce;

(* Note inconsistent names pp. 88, 112, 113. *)

{agent: Crew;)

description: (*

Involves the generation of the high lift con_guration command in the

manual fashion (i.e., by the crew). Note that name spelling (...Cmd) is

not consistent with spellings of comparable operations (i.e.,

...Command). *);

end GenerateMaualCon_gCmd;

operation GenerateAutoCon_gCommand is

components: ;

inputs: TargetFlightPath, ActualFlightPath;

outputs: AutoCon_gCommand;

{agent: MissionFlightSystem;)

description: (*

Generates the high lift con_guration command in an automated fashion

(i.e., by the computer system). *);

end GenerateAutoCon_gCommand;

operation DisplayCon_gAndFailStatus is

components: ;

inputs: HighLiftCon_gAndFailureStatus;

outputs: DisplayedCon_gAndFailureStatus;

description: (*

Displays to the crew the position of the high lift devices and

annunciates any height lift device failure conditions. *);

end DisplayCon_gAndFailStatus;

17

operation MoveLiftCon_gActuator is

components: ;

inputs: HighLiftActuatorCommands;

outputs: HighLiftDevicePositions, HighLiftCon_gAndFailureStatus,

LiftCon/_g;

description: (*

Involves the actuation of the high lift devices (i.e., the leading edge

and trailing edge gaps). *);

end MoveLiftCon_gActuator;

operation ProvideCrewCon_gInterface is

components: ;

inputs: CrewHLCon_gCmdForce;

outputs: ManualCon_gCmd;

description: (*

Provides the interface which allows the crew to input commands to the

high lift system. See notes in analysis section about ad hoc user

interface speci_cation in the original ASCTI. *);

end ProvideCrewCon_gInterface;

operation GenerateCon_gActuatorCmd is

components: ;

inputs: AutoCon_gCommand, HighLiftDevicePositions, ManualCon_gCmd;

outputs: HighLiftActuatorCommands;

description: (*

Involves the actuation of the high lift devices (i.e., the leading edge

and trailing edge gaps). *);

end GenerateCon_gActuatorCmd;

object AutoCon_gCommand is (* pg. 113 *)

operations: GenerateAutoCon_gCommand, GenerateCon_gActuatorCmd;

description: (*

The automatically generated conunands for the leading edge and trailing

edge high lift devices. *);

end AutoConi%gCommand;

object CrewCon_gCmdForce is (* pg. 113 *)

operations: GenerateMaualCon_gCmd, ProvideCrewCon_gInterface;

description: (*

This is the force exerted by the crew to generate the manual high lift

configureation command. *);

end CrewConfigCmdForce;

object DisplayedCon/%gAndFailureStatus is (* pg. 113 *)

operations: ControlMissionFlight, ControlLiftCon_g,

DisplayConf_gAndFailStatus;

description: (*

*);

end DisplayedCon_gAndFailureStatus;

object HighLiftActuatorCommands is (* pg. 113 *)

operations: MoveLiftCon_gActuator, GenerateCon_gActuatorCmd;

description: (*

Commands to the various actuators which move the leadin edge and trailing

edge gaps. *);

end HighLiftActuatorCommands;

18

object HighLiftDevicePositions is (* pg. 113 *)

operations: MoveLiftCon_gActuator, GenerateCon_gActuatorCmd;

description: (*

Sensed positins of the leading edge and trailin ede high lift positions.

*);

end HighLiftDevicePositions;

object HighLiftCon_gAndFailureStatus is (* pg. 113 *)

operations: DisplayCon_gAndFailStatus, MoveLiftCon_gActuator;

description: (*

Position of leading edge and trailing edge high lift devices and failure

status of the high lift devices. *);

end HighLiftCon_gAndFailureStatus;

object LiftCon_g is

components: (* Surmised from prose description on pg. 113. *)

LeadingEdgeWingPos, TrailingEdgeWingPos;

operations: UpdateAircraftState, ControlLiftCon_g;

description: (*

Con_guration of the lift system to achieve necessary lift to support

desired _ight path angle at all mission phases (speeds and altitudes).

The record consists of the leading edge and trailing edge wing positions.

*);

end LiftCon_g;

end ControlLiftCon_guration;

* Module ControlPitch from pp. 120-144

module ControlPitch;

from FlyMission import TargetFlightPath, ActualFlightPath,

ExternalForcesOnActuator;

from AirCraft import AutolFlightPathCommand, ManualFlightPathCommand;

de_ne operation attribute LAPC;

de_ne operation attribute PLEP;

de_ne operation attribute PSAW;

operation ControlPitch is (* pp. 87, 120")

components: GenerateLongitudinalTrimCommand, DisplayLongitudinalTrimStatus,

GeneratePitchActuatorCommand, MovePitchActuators,

ProvideStallAngleOfAttackWarning, ProvideLongitudinalEnvelopeProtection,

GenerateFlightPathCommand, LimitAutoPitchCommand;

inputs: ActualFlightPath, ExternalForcesOnPitchActuator, TargetFlightPath;

outputs: StallAngleOfAttackWarning, DisplayedLongitudinalTrimPosition,

PitchActuatorPosition;

description: (*

Performs all functions required to control the lateral axis by

controlling the pitch angle. *);

LAPC: (* *);

PLEP: (* *);

PLEP: (* *);

PSAW: (* *);

end ControlPitch;

19

operation GenerateLongitudinalTrimCommand is

components: ;

inputs: ;

outputs: AutoLongitudinalTrimCommand, ManualLongitudinalTrimCommand;

description:

(* Generates trim commands to ofnoad steady state pitch commands from

the elevator to the stabilizer. *)

end GenerateLongitudinalTrimCommand;

operation DisplayLongitudinalTrimStatus is

components: ;

inputs: LongitudinalTrimPosition;

outputs: DisplayedLongitudinalTrimPosition;

description: (*

Displays the longitudinal trim status to the crew.

in this function name on pp. 120 and 121.) *)

end DisplayLongitudinalTrimStatus;

NOTE: inconsistency

operation GeneratePitchActuatorCommand is

components: ;

inputs: LimitedFlightPathCommand, ManualLongitudinalTrimCommand,

AutoLongitudinalTrimCommand, ActualFlightPath;

outputs: DesiredPitchActuatorPosition, LongitudinalTrimPosition;

description: (*

Generates the pitch actuator (elevator and stabilizer) position command

based on the night path angle and longitudinal trim commands *)

end GeneratePitchActuatorCommand;

operation MovePitchActuators is

components: ;

inputs: DesiredPitchActuators, ExternalForcesOnActuator;

outputs: PitchActuatorPosition;

description: (*

Receives the desired pitch actuators positions and attempts to

move the actuators to thoses positions. *)

end MovePitchActuators;

operation ProvideStallAngleOfAttackWarning is

components: ;

inputs: ActualFlightPath;

outputs: StallAngleOfAttackWarning;

description: (*

Monitors the aircraft night path state vector and attitudes and

generates a warning for the crew when approaching the aircraft stall

angle of attack. NOTE naming inconsistency on pp. 120 and 121. *)

end ProvideStallAngleOfAttackWarning;

operation ProvideLongitudinalEnvelopeProtection is

components: ;

inputs: ActualFlightPath, ManualFlightPathCommand, LimitedFlightPathCommand;

outputs: LimitedFlightPathCommand;

description: (*

Monitors the aircraft states and modi_es the night path angle command

as necessary to satisfy the longitudinal envelope protection

requirements. *);

end ProvideLongitudinalEnvelopeProtection;

2O

operation GenerateFlightPathCommand is

components: GenerateFlightPathCommandManual,

MakeManualVsAutoFlightModeDecision, EngageManOrAutoOperation,

GenerateFlightPathCommandAuto;

inputs: TargetFlightPath, ActualFlightPath;

outputs: ManualFlightPathCommand, AutoFlightPathCommand;

description: (*

Compares the actual _ight path angle to the desired Bight path angle

and generates the necessary Bight path angle command. *);

end GenerateFlightPathCommand;

operation LimitAutoPitchCommand is

components: ;

inputs: AutoFlightPathCommand;

outputs: LimitedFlightPathCommand;

description: (*

Limits the autopilot control authority and protects against failures (in

particular hardover and oscillatory failures) in the autopilot. *);

end LimitAutoPitchCommand;

(* Pp. 127 - 128 *)

operation GenerateFlightPathCmdManual is

inputs: ActualFlightPath, TargetFlightPath;

outputs: ManualFlightPathCo_and;

description: (*

Involves the generation of a _ight path command manually (i.e., by the

crew) as a result of comparing the target and actual _ight paths. *);

end GenerateFlightPathCmdManual;

operation GenerateFlightPathCmdAuto is

inputs: ;

outputs: ;

description: (*

Generates a _ight path angle command automatically (i.e., by the a

computer) as a result of the difference between the actual and target

Bight paths. *);

end GenerateFlightPathCmdAuto;

operation MakeManualVsAutoFlightModeDecision is

inputs: ManualFlightMode;

outputs: AutoFlightMode;

description:

(* Decides whether to generate _ight path commands manually or

automatically. *);

end MakeManualVsAutoFlightModeDecision;

{Evidently already de_ned -- FIX

operation EngageManOrAutoOperation is

inputs: ManualFlightMode;

outputs: AutoFlightMode;

description: (*

Activates one of the Bight path command generation processes depending

on the mode engaged. *);

end EngageManOrAutoOperation;

)

2!

object ExternalForcesOnPitchActuator instance of ExternalForcesOnActuator is

operations: ControlMissionFlight, ControlPitch;

description: (*

All forces (in particular environmental forces) other than the actuation

forces acting on the pitch actuator. *);

end ExternalForcesOnPitchActuator;

object DisplayedLongitudinalTrimPosition is

operations: ControlMissionFlight, ControlPitch,

DisplayLongitudinalTrimStatus;

description:

(* The longitudinal trim position displayed to the crew *)

end DisplayedLongitudinalTrimPosition;

object AutoLongitudinalTrimConm_nd is

operations: GenerateLongitudinalTrimCommand, GeneratePitchActuatorCommand;

description: (*

The Longitudinal trim command generated automatically during enhanced

manual control and autoBight control *)

end AutoLongitudinalTrimCommand;

object ManualLongitudinalTrimCommand is

operations: GenerateLongitudinalTrimCommand, GeneratePitchActuatorCommand;

description: (*

The longitudinal trim command generated by the crew for use during normal

and backup control *);

end ManualLongitudinalTrimCommand;

object AutoFlightPathCommand is

operations: GenerateFlightPathCommand, LimitAutoPitchCommand;

description: (*

The Bight path command generated automatically during enhanced manual

control and auto_ight control *);

end AutoFlightPathCommand;

object LongitudinalTrimPosition is

operations: DisplayLongitudinalTrimStatus, GeneratePitchActuatorCommand,

GeneratePitchActuatorCommand;

description:

(* Position of the longitudinal trim actuator *)

end LongitudinalTrimPosition;

object ActualFlightPath is

operations: ;

description: (*

The sensed 4 dimensional Bight path & attitudes of the aircraft as well

as other sensed values necessary to satisfy the control requirements.*);

end ActualFlightPath;

object LimitedFlightPathCommand is

operations: GeneratePitchActuat°rC°mmand'

ProvideLongitudinalEnvelopeProtection, LimitAutoPitchCommand;

description: (*

The _ight path command limited such that envelope protection is not

violated. *);

end LimitedFlightPathCommand;

22

object StallAngleOfAttackWarning is

operations: ControlMissionFlight, ControlPitch,

ProvideStallAngleOfAttackWarning;

description: (*

The audible and visual indication to the crew that the aircraft is

approaching the stall angle of attack. *);

end StallAngleOfAttackWarning;

object PitchActuatorPosition is

operations: ;

description: (*

The Position of the actuator(s) which provide(s) aircraft pitch maneuver

and trim control. *);

end PitchActuatorPosition;

(* object TargetFlightPath is FlyMission.TargetFlightPath; *)

object DesiredPitchActuatorPosition is

operations: GeneratePitchActuatorCommand, MovePitchActuators;

description: (*

The desired pitch actuator (elevator) position such that the limited

_ight path angle command is achieved *);

end DesiredPitchActuatorPosition;

(* object ExternalForcesOnActuator = FlyMission.ExternalForcesOnActuator; *)

end ControlPitch;

* Module FlightControlSystemPitchFunctions from pp. 129-144

module FlightControlSystemPitchFunctions;

from ControlPitch import PitchActuatorPosition;

from Aircraft import AutoFlightPathCommand;

operation FlightControlSystemPitchContext is

components: PerformPilotFunctions, PerformCopilotFunctions,

FlightControlSystemPitchFunctions, PerformAutoFlightSystemFunctions;

inputs:

(* Unclear -- see pg. 129. *);

outputs: PitchActuatorPosition;

description: (* Unclear -- see pp. 129-130. *);

end FlightControlSystemPitchContext;

operation FlightControlSystemPitchFunctions is

components: ProvidePilotPitchInterface, ProvideCopilotPitchInterface,

DisplayLongitudinalTrimStatus, ResolvePitchControlContention,

GeneratePitchActuatorCommand, MovePitchActuators,

ProvideStallAngleOfAttackWarning,

DisplayLongitudinalEnvelopeProtectStatus,

ProvideLongitudinalEnvelopeProtection, LimitAutoPitchCommands;

inputs: PilotLongitudinalTrimForce, PilotFlightPathCommandForce,

CopilotLongitudinalTrimForce, CopilotFlightPathCmdForce,

AutoLongitudinalTrimCommand, AutoFlightPathCommand

23

(* PLUS MAYBE THE FOLLOWING DUE TO AMBIGUITY ON PP. 129 VS 133: *)

, ActualFlightPath, ExternalForcesOnActuator;

outputs: PilotFlightPathCmdFeelForce, CopilotFlightPathCmdFeelForce,

PitchActuatorPosition;

description: (*

Note that the following description is taken from ASCTI page 130, but it

is not a fully accurate description of this operation as it is de_ned in

WSRSL. See the remarks in the _rst-year report.

Contains all the _ight control functions assigned to the FCS. As a

result of this assignment several new processes are created, some of

these are interface functions and others are as a result of how functions

were allocated to the AEs. (I.e., Envelope Protection was assigned to

the FCS with a probability of failure < 10E-6. However this function

requires <IOE-9. Therefore the pilot and copilot must perform envelope

protection when not being performed by the FCS. Thus a pilot indication

function of the status of envelope protection is generated.) Pilot and

copilot can command roll reate, thus there is a function requirement to

resolve control contention.*)

end FlightControlSystemPitchFunctions;

object CopilotFlightPathCommandFeelForce is

components: ;

description: (*

A resistance force exerted by the controller which is a feedback to the

copilot indicative of the dight path angle. *);

end CopilotFlightPathCommandFeelForce;

object CopilotFlightPathCommandForce is

components: ;

description: (*

The physical force generated by the copilot to control the aircraft

Bight path angle. It is in the form of a force exerted by the pilot's

hand. *);

end CopilotFlightPathConunandForce;

object CopilotLongitudinalTrimForce is

components: ;

description: (*

The physical force exerted by the copilot's hand to generate the desired

longitudinal trim cor_mand. *_;

end CopilotLongitudinalTrimForce;

object PilotFlightPathCommandForce is

components: ;

description: (*

The physical signal created by the pilot to control the aircraft _ight

path. It is in the form exerted by the pilot.*);

end PilotFlightPathCommandForce;

object PilotFlightPathFeelForce is

components: ;

description: (*

A resistance force exerted by the controller which is a feedback to the

pilot indicative of the Bight path command. *);

end PilotFlightPathFeelForce ;

24

object PilotLongitudinalTrimForce is

description: (*

This How is the physical force exerted by the pilot's hand to generate

the desired longitudinal trim command. *);

end PilotLongitudinalTrimForce;

(*Pp. 133 - 135")

operation ProvidePilotPitchInterface is

components: ;

inputs: PilotLongitudinalTrimForce, PilotFlightPathCmdForce;

outputs: PilotFlightPathCmdFeelForce, PilotLongitudinalTrimCommand,

PilotFlightPathCommand;

description: (*

Converts the signal received from the pilot in the form of a force

exerted by the pilot into a Hight path angle command signal to be used

by the FCS. It also provides the pilot with a feedback feel force

indicative of the command. *);

end ProvidePilotPitchInterface;

operation ProvideCopilotPitchInterface is

components: ConvertForceToDisplacement, GenerateLongitudinalFeelForce,

TranslateFlightPathDisplacementToCommand,

TranslateTrimForceToTrimCommand;

inputs: CopilotFlightPathCmdForce, CopilotLongitudinalTrimForce;

outputs: CopilotFlightPathCmdFeelForce, CopilotFlightPathCommand,

CopilotLongitudinalTrimCommand;

description: (*

Provides the same capability for the copilot as the

ProvidePilotPitchInterface does for the pilot. *);

end ProvideCopilotPitchInterface;

{Evidently already de_ned -- FIX

operation DisplayLongitudinalTrimStatus is

components: ;

inputs: ;

outputs: LongitudinalTrimPosition;

description: (*

Displays the longitudinal trim status to the crew. *);

end DisplayLongitudinalTrimStatus;

)

operation ResolvePitchControlContention is

components: ;

inputs: CopilotFlightPathCommand, CopilotLongitudinalTrimCommand,

PilotFlightPathCommand, PilotLongitudinalTrimCommand;

outputs: ManualFlightPathCommand;

description: (*

Generated by the assignment of the GenerateFlightPathCommandManual to

both the pilot and copilot. NOTE: this description is unclear. *);

end ResolvePitchControlContention;

{Evidently already de_ned -- FIX

operation GeneratePitchActuatorCommand is

components: ;

inputs: ManualFlightPathCommand, ActualFlightPath,

AutoLongitudinalTrimCommand;

25

outputs: LongitudinalTrimPosition, DesiredPitchActuatorPosition;

description: (*

Generates the pitch actuator (elevator and stabilizer) position commands

based on the fight path angle and longitudinal trim commands.

*);

end GeneratePitchActuatorCommand;

(Evidently already defined -- FIX

operation MovePitchActuators is

components: ;

inputs: DesiredPitchActuatorPosition, ExternalForcesOnActuator;

outputs: PitchActuatorPosition;

description: (*

Receives the desired pitch actuators positions and attempts to move the

actuators to those positions. *);

end MovePitchActuators;

)

(Evidently already defined -- FIX

operation ProvideStallA/%gleOfAttackWarning is

components: ;

inputs: ActualFlightPath;

outputs: StallAngleOfAttackWarning;

description: (*

Monitors the aircraft flight path state vector and attitudes and

generates a warning for the crew when approaching the aircraft stall

angle of atack. *);

end ProvideStallAngleOfAttackWarning;

)

(*NOTE: Inconsistent Names Pp. 133, 134")

operation DisplayLongitudinalEnvelopeProtectStatus is

components: ;

inputs: LongitudinalEnvelopeProtectStatus;

outputs: DisplayedLongitudinalEnvelopeProtectStatus;

description: (*

Results from the allocation of ProvideLongitudinalEnvelopeProtection to

the FCS with a probability of loss of function of <IOE-6. Pitch envelope

protection has a req for probability of loss of function <IOE-9, and thus

the crew has responsibility for pitch envelope protection when not

performed by the FCS. Thus the crew must be aware of envelope protect

status, hence the functional requirement to

DisplayLongitudinalEnvelopeProtectStatus *);

end DisplayLongitudinalEnvelopeProtectStatus;

(Evidently already defined -- FIX

operation ProvideLongitudinalEnvelopeProtection is

components: ;

inputs: ActualFlightPath, LimitedFlightPathCommand,

ManualFlightPathCommand;

outputs: LimitedFlightPathCommand, LongitudinalEnvelopeProtectStatus;

description: (*

Monitors the aircraft states and modi_es the fight path angle command

as necessary to satisfy the longitudinal envelope protection

requirements.

26

*);
end ProvideLongitudinalEnvelopeProtection;

)

operation LimitAutoPitchCommands is

components: ;

inputs: AutoFlightPathCommand;

outputs: LimitedFlightPathCommand;

description: (*

Limits the autopilot control authority and protects against failures (in

particular hardover and oscillatory failures in the autopilot. *);

end LimitAutoPitchCommands;

(**** Pilot Pitch Interface, pp. 137-138 ****)

operation ConvertForcesToDisplacement is

components: ;

inputs: FlightPathCommandForce, FlightPathCommandFeelForce;

outputs: FlightPathCommandDisplacement;

description: (*

Receives the pilot force and feedback feel force and generates a

displacement. Note name inconsistency on pp. 137, 138. *)

end ConvertForcesToDisplacement;

operation GenerateLongitudinalFeelForce is

components: ;

inputs: FlightPathAngleCommand;

outputs: FlightPathCommandFeelForce;

description: (*

Generates a force to feedback to the pilot which is indicative of the

pitch maneuver and trim commands. Note name inconsistency pp. 137,138.

*);

end GenerateLongitudinalFeelForce;

operation TranslateFlightPathDisplacementToCommand is

components: ;

inputs: FlightPathCommandDisplacement;

outputs: FlightPathAngleCommand;

description: (*

Translates the physical displacement of the pitch controller into a

hight path command. Note name inconsistency pp. 137,138. *);

end TranslateFlightPathDisplacementToCommand;

operation TranslateTrimForceToTrimCommand is

components: ;

inputs: LongitudinalTrimForce;

outputs: LongitudinalTrimCommand;

description: (*

Converts the physical displacement generated by the physical force

exerted by the pilot into a trim command for use by the FCS. Note name

inconsistency pp. 137,138. *);

end TranslateTrimForceToTrimCommand;

end FlightControlSystemPitchFunctions;

27

* Module ControlRoll from pp. 145-168

module ControlRoll;

from FlyMission import TargetFlightPath, ActualFlightPath,

ExternalForcesOnActuator;

operation ControlRoll is (*pp. 87, 145")

components: GenerateRollTrimCommand, DisplayRollTrimPosition,

GenerateRollActuatorCommand, MoveRollActuator,

ProvideRollEnvelopeProtection, GenerateRollRateCommand,

LimitAutoRollCommands;

inputs: TargetFlightPath, ActualFlightPath, ExternalForcesOnRollActuator;

outputs: DisplayedRollTrimPosition, RollActuatorPosition;

description: (*

Performs all functions required to control the lateral axis by

controlling the roll angle. *);

end ControlRoll;

operation GenerateRollTrimCommand is

components: ;

inputs: (*Note that no inputs is suspicious here*);

outputs: AutoRollTrimCommand, ManualRollTrimCommand;

description: (*

Generates roll trim commands to offset asymmetries such as engine out,

engine loss and lateral winds. *);

end GenerateRollTrimCommand;

operation DisplayRollTrimPosition is

components: ;

inputs: RollTrimPosition;

outputs: DisplayedRollTrimPosition;

description: (*

Displays roll trim position to the crew. *);

end DisplayRollTrimPosition;

operation GenerateRollActuatorCommand is

components: ;

inputs: ManualRollTrimCommand, AutoRollTrimCommand, ActualFlightPath,

LimitedRollRateCommand;

outputs: RollTrimPosition, DesiredRollActuatorPosition;

description: (*

Generates the roll actuator (aileron / spoiler) position commands based

on roll rate and trim commands. *);

end GenerateRollActuatorCommand;

operation MoveRollActuator is

components: ;

inputs: DesiredRollActuatorPosition, ExternalForcesOnRollActuator;

outputs: RollActuatorPosition;

description: (*

Receives the desired roll actuator position and attempts to move the roll

actuator to that position. *);

end MoveRollActuator;

operation ProvideRollEnvelopeProtection is

28

components: ;

inputs: ManualRollRateCommand, LimitedAutoRollCommand, RollAngle;

outputs: LimitedRollRateCommand;

description: (*

Monitors actual roll angle and commanded roll rate and modi_es the roll

rate command as necessary to prevent the roll angle from exceeding

certain limits. *);

end ProvideRollEnvelopeProtection;

operation GenerateRollRateCommand is

components: GenerateRollRateCommandManual, EngageManOrAutoOperation,

GenerateRollRateCommandAuto, MakeManualVsAutoFlightModeDecision;

inputs: TargetFlightPath, ActualFlightPath;

outputs: AutoRollRateCommand, ManualRollRateCommand;

description: (*

Compares the target _ight path and actual _ight path and generates

necessary roll rate command to drive the actual to the target. *);

end GenerateRollRateCommand;

operation LimitAutoRollCommands is

components: ;

inputs: AutoRollRateCommand;

outputs: LimitedAutoRollCommand;

description: (*

Limits the autopilot control authority and protects against failures (in

particular hardover or oscillatory failures) in the autopilot. *);

end LimitAutoRollCommands;

(* Pp. 151-152 *)

operation GenerateRollRateCommandManual is

components: ;

inputs: ActualFlightPath, TargetFlightPath, ManualModeEngaged;

outputs: ManualRollRateCommand;

description: (*

Involves the generation of ta roll rate command manually (i.e., by the

crew) as a result of comparing the target and actual flight paths. *);

end GenerateRollRateCommandManual;

operation EngageManOrAutoOperation is

components: ;

inputs: ManualFlightMode, AutoFlightMode;

outputs: ManualModeEngaged, AutoModeEngaged;

description: (*

Activates one of the roll rate generation processes depending on the mode

engaged. *)

end EngageManOrAutoOperation;

operation GenerateRollRateCommandAuto is

components: ;

inputs: AutoModeEngaged, TargetFlightPath, ActualFlightPath;

outputs: AutoRollRateCommand;

description: (*

Involves the generation of a roll rate command automatically (i.e., by

the computer) as a result of the difference between the actual and target

_ight path. *) ;

end GenerateRollRateCommandAuto;

29

operation MakeManualVsAutoFlightModeDecision is

components: ;

inputs: (* Note no inputs -- seem reasonable here. *);

outputs: ManualFlightMode, AutoFlightMode;

description: (*

Decides whether to generate _ight path commands manually or

automatically. Note -- not clear if this should be the same as operation

of the same in ControlPitch module. *);

end MakeManualVsAutoFlightModeDecision;

object AutoRollRateCommand is

operations: GenerateRollRateCommand, LimitAutoRollCommands,

GenerateRollRateCon_nandAuto;

description: (*

Roll rate command generated in an automated fashion (i.e., by an

auto_ight computer). *);

end AutoRollRateCommand;

object AutoRollTrimCommand is

operations: GenerateRollTrimCommand, GenerateRollActuatorCommand;

description: (*

Roll trim command generated automatically for use during enhanced manual

control and autoOight control. *);

end AutoRollTrimCommand;

object DesiredRollActuatorPosition is

operations: GenerateRollActuatorCommand, MoveRollActuator;

description: (*

The desired roll actuator position such that the limited roll rate

command is achieved. *);

end DesiredRollActuatorPosition;

object DisplayedRollTrimPosition is

operations: ControlMissionFlight, ControlRoll, DisplayRollTrimPosition,

FlightControlSystemRollFunctions, DisplayRollTrimStatus;

description: (*

The roll trim position displayed to the crew. *);

end DisplayedRollTrimPosition;

object ExternalForcesOnRollActuator instance of ExternalForcesOnActuator is

operations: ControlRoll, MoveRollActuator,

FlightControlSystemRollFunctions;

description: (*

All forces (in particular environmental forces) other than the actuation

forces acting on the aerodynamic braking and roll actuation system. *);

end ExternalForcesOnRollActuator;

object LimitedAutoRollCommand is

operations: ProvideRollEnvelopeProtection, LimitAutoRollCommands;

description: (*

The auto roll rate command limited to the auto_ight roll authority. *);

end LimitedAutoRollCommand;

object LimitedRollRateCoranand is

operations: GenerateRollActuatorCommand, ProvideRollEnvelopeProtection;

description: (*

3O

The roll rate command limited such that the envrlope protection criteria

are not violated. *);

end LimitedRollRateCommand;

object ManualRollRateCommand is

operations: ProvideRollEnvelopeProtection, GenerateRollRateCommand,

GenerateRollRateCommandManual, ResolveRollControlContention;

description: (*

Roll rate command generated manually (i.e., by the crew). *);

end ManualRollRateCommand;

object ManualRollTrimCommand is

operations: GenerateRollTrimCommand, GenerateRollActuatorCommand;

description: (*

The roll trim command as generated by the crew for normal control.

trim provides a steady state roll angle to offset asymmetries. *);

end ManualRollTrimCommand;

The

object RollActuatorPosition is

operations: UpdateAircraftState, ControlRoll, MoveRollActuator,

FlightControlSystemRollContext, FlightControlSystemRollFunctions;

description: (*

Position of the system which makdes the aircraft roll. *);

end RollActuatorPosition;

object RollAngle is

operations: ProvideRollEnvelopeProtection,

FlightControlSystemRollFunctions;

description: (*

Airplane roll angle. *);

end RollAngle;

object RollTrimPosition is

operations: DisplayRollTrimPosition, GenerateRollActuatorCommand;

description: (*

Position of the roll trim actuator. *);

end RollTrimPosition;

end ControlRoll;

* Module FlightControlSystemRollFunctions from pp. 153-168

module FlightControlSystemRollFunctions;

operation FlightControlSystemRollContext is

components: PerformPilotFunctions, PerformCopilotFunctions,

FlightControlSystemRollFunctions, PerformAutoFlightSystemFunctions;

inputs: (* Unclear -- see pg. 153. *);

outputs: RollActuatorPosition;

description: (* Unclear -- see pp. 153-154. Also cf.

FlightControlSystemPitchContext in module

FlightControlSystemRollFunctions above. *);

end FlightControlSystemRollContext;

31

operation FlightControlSystemRollFunctions is
components: ProvidePilotRollInterface, ProvideCopilotRollInterface,

DisplayRollTrimStatus, ResolveRollControlContention,
GenerateRollActuatorcommand,MoveRollActuator,
DisplayRollEnvelopeProtectStatus, ProvideRollEnvelopeProtection,
LimitAutoRollCommands;

inputs: PilotRollTrimForce, PilotRollRateForce, CopilotRollRateForce,
CopilotRollTrimForce, AutoRollTrimCmd, AutoRollRateCmd
(* plus maybethe following due to ambiguity on pp. 153 versus 157: *)

, ActualFlightPath, ExternalForcesOnActuator, RollAngle (*Note that the

RollAngle input here is seemingly inconsistent with the ActualFlightPath

input in the comparable position in the FlightContorlSystemPitchFunctions

on pg. 133.*);

outputs: PilotRRCmdFeelForce, CopilotRRCmdFeelForce,

DisplayedRollTrimPosition, RollActuatorPosition,

DisplayedRollEnvelopeProtectStatus (*Note that as with inputs, these are

inconsistent on pp. 153 versus 157.*);

description: (*

Note that the following description is taken from ASCTI page 154, but it

is not a fully accurate description of this operation as it is de_ned in

WSRSL. See the remarks in the _rst-year of the report. Cf. also

description of operation FlightControlSystemPitchFunctions above.

Contains all the Bight control functions assigned to the FCS. As a

result of this assignment several new processes are created. Some of

these are interface functions and others are as a result of how functions

were allocated to the AEs. (I.e., Envelope protection was assigned to

the FCS with a probability of failure <10E-6. However this function

requires <IOE-09. Therefore the pilot and copilot must perform envelope

protection when not being performed by the FCS. Thus a pilot indication

function of the status of envelope protection is generated.) Pilot and

copilot can command roll rate, thus there is a functional requirement to

resolve control contention. *);

end FlightControlSystemRollFunctions;

operation ProvidePilotRollInterface is

components: ConvertForcesToDisplacement, GenerateRollFeelForce,

TranslateRRDisplToRRCommand, TranslateTrimForceToTrimCommand;

inputs: PilotRollTrimForce, PilotRollRateForce;

outputs: PilotRRCmdFeelForce, PilotRollTrimCommand, PilotRollRateCommand;

description: (*

Converts the signal received from the pilot in the form of a force

exerted by the pilots hand into a roll rate signal to be used by the FCS.

It also provides the pilot with a feedback feel force proportional to the

commanded roll rate. *);

end ProvidePilotRollInterface;

operation ProvideCopilotRollInterface is

components: ;

inputs: CopilotRollRateForce, CopilotRollTrimForce;

outputs: CopilotRRCmdFeelForce, CopilotRollRateCommand,

CopilotRollTrimCommand;

description: (*

Provides the same function for the copilot as the

ProvidePilotRollInterface does for the pilot. *);

end ProvideCopilotRollInterface;

32

operation DisplayRollTrimStatus is
components: ;
inputs: RollTrimPosition;
outputs: DisplayedRollTrimPosition;
description: (*

Displays roll trim position to the crew.

pp. 157 vs. 158. *);

end DisplayRollTrimStatus;

Note naming inconsistency on

operation ResolveRollControlContention is

components: ;

inputs: PilotRollRateCommand, PilotRollTrimCommand, CopilotRollRateCommand,

CopilotRollTrimCommand;

outputs: ManualRollRateCommand, ManualRollTrimCmd;

description: (*

Generated by the assignment of the Generate Roll Rate Cmd Manual to both

the pilot and copilot. *)

end ResolveRollControlContention;

operation GenerateRollActuatorCommand is

components: ;

inputs: LimitedRollRateCommand, ManualRollTrimCmd, ActualFlightPath,

AutoRollTrimCmd;

outputs: RollTrimPosition, DesiredRollActuatorPos;

description: (*

Generates the roll actuator (aileron / spoiler) position commands based

on roll rate and trim commands. *);

end GenerateRollActuatorCommand;

operation MoveRollActuator is

components: ;

inputs: DesiredRollActuatorPos, ExternalForcesOnActuator;

outputs: RollActuatorPosition;

description: (*

Receives the desired roll actuator position and attempts to move the roll

actuator to that position. *);

end MoveRollActuator;

operation DisplayRollEnvelopeProtectStatus is

components: ;

inputs: RollEnvelopeProtectStatus;

outputs: DisplayedRollEnvelopeProtectStatus;

description: (*

Results from the allocation of Provide Roll Envelope Protection to the

FCS with a probability of loss of function of <IOE-6. Provide

RollEnvelopeProtection has a probability of loss of function of < 10E-9

and thus the crew has responsibility for roll envelope protection when

not performed by the FCS. Thus the crew must be aware of envelope

protect status, hence the function requirement to Display Roll Envelope

Protect Status. *);

end DisplayRollEnvelopeProtectStatus;

operation ProvideRollEnvelopeProtection is

components: ;

inputs: RollAngle (*Note:Why not ActualFlightPath as in

operation ProvideLongitudinalEnvelopeProtection on pg. 133"),

33

LimitedAutoRollcommand, ManualRollRateCommand;

outputs: LimitedRollRateCommand, RollEnvelopeProtectStatus;

description: (*

Monitors actual roll angle and commanded roll rate and modi_es the roll

rate command as necessary to prevent the roll angle from exceeding

certain limits. *);

end ProvideRollEnvelopeProtection;

operation LimitAutoRollCommands is

components: ;

inputs: AutoRollRateCommand;

outputs: LimitedAutoRollCor.mand;

description: (*

Limits the autopilot control authority and protects against failures (in

particular hardover or oscillatory failures) in the autopilot. *);

end LimitAutoRollCommands;

(**** Pilot Roll Interface, pp. 161-162 ****)

operation ConvertForcesToDisplacement is

components: ;

inputs: RollRateForce, RRCmdFeelForce;

outputs: RollRateCmdDispl;

description: (*

Receives the pilot force and feedback feel force and generates a

displacement. *);

end ConvertForcesToDisplacement;

operation GenerateRollFeelForce is

components: ;

inputs: RollRateCommand;

outputs: RRCmdFeelForce, RRCmdFeelForce;

description: (*

Generates a force to feedback to the pilot which is an indication of the

commanded roll rate. *);

end GenerateRollFeelForce;

operation TranslateRRDisplToRRCommand is

components: ;

inputs: RollRateCmdDispl;

outputs: RollRateCommand, RollRateCommand;

description: (*

Translates the sidestick controller displacement to a roll rate command.

*);

end TranslateRRDisplToRRCommand;

operation TranslateTrimForceToTrimCommand is

components: ;

inputs: RollTrimForce;

outputs: RollTrimCommand;

description: (*

Converts the physical displacement generated by the physical force

exerted by the pilot into a trim command for use by the FCS. *);

end TranslateTrimForceToTrimCommand;

end FlightControlSystemRollFunctions;

34

* Module ControlYaw from pp. 169 - 193

module ControlYaw;

operation ControlYaw is

components: GenerateDirectionalTrimCommand, DisplayDirectionalTrimPosition,

GenerateYawActuatorCommand, EngineOutControlAugmentation,

MoveYawActuator, ProvideYawEnvelopeProtection, GeneateSideslipCommand,

LimitAutoSideslipCommands;

inputs: TargetFlightPath, ActualFlightPath, EngineThrust,

ExternalForcesOnYawActuator, SideslipAngle (* Inconsistent pp. 87 versus

169 *) ;

outputs: DisplayedDirectionalTrimPos, YawActuatorPosition;

description:

(* Controls the aircraft directional axis. *);

end ControlYaw;

operation GenerateDirectionalTrimCommand is

components: ;

inputs: (* None -- suspicious. *);

outputs: ManualDirectionalTrimCmd, AutoDirectionalTrimCmd;

description: (*

Generates directional trim commands to offset asymmetries such as engine

out and lateral winds. Note: inconsistent names pp. i. *);

end GenerateDirectionalTrimCommand;

operation DisplayDirectionalTrimPosition is

components: ;

inputs: DirectionalTrimPosition;

outputs: DisplayedDirectionalTrimPos;

description: (*

Displays the position for the directional trim actuator to the crew. *);

end DisplayDirectionalTrimPosition;

operation GenerateYawActuatorCommand is

components: ;

inputs: LimitedSideslipCommand, ManualDirectionalTrimCmd,

AutoDirectionalTrimCmd, ActualFlightPath, ECAYawCommand;

outputs: DirectionalTrimPosition, DesiredYawActuatorPosition;

description: (*

Generates the sideslip actuator (rudder) position command based on the

limited sideslip command, directional trim command and the engine out

control augmentation command. * ;

end GenerateYawActuatorCommand;

operation EngineOutControlAugmentatlon is

components: ;

inputs: EnginesThrust;

outputs: ECAYawCommand;

description: (*

Monitors the engine thrust and generates a yaw command to assist the

pilot in compensation for an engine out situation. In particular it

helps relieve pilot workload in takeoff and go around which are high

pilot workload situations. *);

end EngineOutControlAugmentation;

35

operation MoveYawActuator is

components: ;

inputs: DesiredYawActuatorPosition, ExternalForcesOnYawActuator;

outputs: YawActuatorPosition;

description: (*

Receives the desired yaw actuator position and attempts to move the yaw

actuator to that position. *);

end MoveYawActuator;

operation ProvideYawEnvelopeProtection is

components: ;

inputs: SideslipAngle, ManualSideslipComand, LimitedAutoSideslipCommand;

outputs: LimitedSideslipCommand;

description: (*

Monitors the commanded sideslip and the actual sideslip and modi_es the

sideslip command to prevent the sideslip angle from exceeding unsafe

limits. *);

end ProvideYawEnvelopeProtection;

operation GeneateSideslipCommand is

components: ;

inputs: TargetFlightPath, ActualFlightPath;

outputs: AutoSideslipCommand, ManualSideslipCommand;

description: (*

Involves the generation of sideslip commands to allow for decrab for

landings, performing coordinated turns and offsetting certain

asymmetries. *);

end GeneateSideslipCommand;

operation LimitAutoSideslipCommands is

components: ;

inputs: AutoSideslipCormnand;

outputs: LimitedAutoSideslipCommand;

description: (*

Limits the autopilot control autority and protects against failures (in

particular hardover or oscillatory failures) in the autopilot. *);

end LimitAutoSideslipCommands;

operation GenerateSideslipCmdManual is

components: ;

inputs: ActualFlightPath, TargetntFlightPathNBManualSideslipCommand,

ManualModeEngaged;

outputs: ManualSideslipCommand;

description: (*

Involves the generation of a sideslip command manually (i.e., by the

crew) as a result of comparing the actual and desired _ight path

(including attitudes). *);

end GenerateSideslipCmdManual;

(* NOTE: Next to ops are generic and should, accordingly, appear in another

module. Cf. GenerateRollRateCommand (pg. 151) and

GenerateFlightPathCommand (pg. 127). *)

operation MakeManualVsAutoFlightModeDecision is

components: ;

inputs: none;

outputs: ManualFlightMode, AutoFlightMode;

36

description: (* *);

end MakeManualVsAutoFlightModeDecision;

operation EngageManOrAutoOperation is

components: ;

inputs: ManualFlightMode, AutoFlightMode;

outputs: ManualModeEngaged, AutoModeEngaged;

description: (*

Involves the generation of a sideslip command automatically (i.e., by a

computer. *);

end EngageManOrAutoOperation;

operation GenerateSideslipCmdAuto is

components: ;

inputs: TargetFlightPath, ActualFlightPath, AutoModeEngaged;

outputs: AutoSideslipCommand;

description: (*

*);

end GenerateSideslipCmdAuto;

object ExternalForcesOnYawActuator instance of ExternalForcesOnActuator is

operations: ControlMissionFlight, ControlRoll, ControlYaw, MoveYawActuator;

description: (*

All forces (in particular environmental forces) other than

actuation forces actin on the yaw actuation system. *);

end ExternalForcesOnYawActuator;

end ControlYaw;

* Module FlightControlSystemYawFunctions from pp. 179-193

module FlightControlSystemYawFunctions;

operation FlightControlSystemYawContext is

components: PerformPilotFunctions, PerformCopilotFunctions,

FlightControlSystemYawFunctions, PerformAutoFlightSystemFunctions;

inputs: (* Unclear -- see pg. 179. *) ;

outputs: YawActuatorPosition;

description: (* *);

end FlightControlSystemYawContext;

operation FlightControlSystemYawFunctions is

components: ProvidePilotYawInterface, ProvideCopilotYawInterface,

DisplayDirectionalTrimPosition, ResolveYawControlContentions,

GenerateYawActuatorCommand, EngineOutControlAugmentation,

MoveYawActuator, DisplayEnvelopeProtectStatus,

ProvideYawEnvelopeProtection, LimitAutoSideslipCommands;

inputs: PilotDirectionalTrimForce, PilotSideslipForce,

CopilotDirectionalTrimForce, CopilotSideslipForce,

AutoDirectionalTrimCmd, AutoSideslipCommand

(* plus maybe the following due to ambiguity on pp. 179 versus 183: *)

, ActualFlightPath, EngineThrust, ExternalForcesOnActuator,

SideslipAngle;

outputs: ;

description: (* *);

37

end FlightControlSystemYawFunctions;

operation ProvidePilotYawInterface is
components: ConvertForceToDisplacement, GenerateSideslipFeelForce,

TranslateSideslipDisplCmd, TranslateDirecTrimForceToCommand;

inputs: PilotSideslipForce, PilotDirectionalTrimForce;

outputs: PilotSideslipCmdFeelForce, PilotDirectionalTrimCmd,

PilotSideslipCo_nand;

description: (*

Converts the signal received from the pilot in the form of a force

exerted by the pilot's hand into a sideslip signal to be used by the FCS.

It also provides the pilot with a feedback force proportional to the

command sideslip angle. *);

end ProvidePilotYawInterface;

operation ProvideCopilotYawInterface is

components: ;

inputs: CopilotSideslipForce, CopilotDirectionalTrimForce,

CopilotSideslipCommand, CopilotDirectionalTrimCmd;

outputs: CopilotSideslipCmdFeelForce;

description: (*

Provides the same function for the copilot as the

ProvidePilotYawInterface does for the pilot. *);

end ProvideCopilotYawInterface;

operation DisplayDirectionalTrimPosition is

components: ;

inputs: DirectionalTrimPosition;

outputs: DisplayedDirectionalTrimPos;

description: (*

Displays the position of the directional trim actuator to the crew. *);

end DisplayDirectionalTrimPosition;

operation ResolveYawControlContentions is

components: ;

inputs: PilotSideslipCommand, PilotDirectionalTrimCmd,

CopilotSideslipCommand, CopilotDirectionalTrimCmd;

outputs: ManualSideslipCommand, ManualDirectionalTrimCmd;

description: (*

Generated as a result of the assignment of the GenerateSideslipCmdManual

to both the pilot and copilot. *);

end ResolveYawControlContentions;

operation GenerateYawActuatorCommand is

components: ;

inputs: LimitedSideslipCommand, ManualDirectionalTrimCmd, ActualFlightPath,

AutoDirectionalTrimCmd, ECAYawCommand;

outputs: DirectionalTrimPosition, DesiredYawActuatorPosition;

description: (*

Generates the sideslip actuator (rudder) position command based on the

limited sideslip command, directional trim conm_and and the engine out

control augmentation command. *);

end GenerateYawActuatorCoImmand;

operation EngineOutControlAugmentation is

components: ;

38

inputs: EnginesThrust;

outputs: ECAYawCommand;

description: (*

Monitors the engine thrust and generates a yaw command to assist the

pilot in compensating for an engine out situation. In particular it

helps relieve pilot workload in takeoff and go around which are high

pilot workload situations. *);

end EngineOutControlAugmentation;

operation MoveYawActuator is

components: ;

inputs: DesiredYawActuatorPosition, ExternalForcesOnActuator;

outputs: YawActuatorPosition;

description: (*

Receives the desired yaw actuator position and attempts to move the yaw

actuator to that position. *);

end MoveYawActuator;

operation DisplayYawEnvelopeProtectStatus is

components: ;

inputs: YawEnvelopeProtectStatus;

outputs: DisplayedYawEnvelopeProtectStatus;

description: (*

Results from the allocation of ProvideYawEnvelopeProtection to the FCS

with a probability of loss of function < 10E-6. YawEnvelopeProtection

has a proability of loss of function < 109E-9 and thus the crew has

responsibility for yaw envelope protection when not performed by the FCS,

hence the crew must be aware of the envelope protection status which

leads to this functional requirement. *);

end DisplayYawEnvelopeProtectStatus;

operation ProvideYawEnvelopeProtection is

components: ;

inputs: SideslipAngle, LimitedAutoSideslipCommand, ManualSideslipCommand;

outputs: LimitedSideslipCommand, YawEnvelopeProtectStatus;

description: (*

Monitors the commanded sideslip and the actual sideslip and modifies the

sideslip command to prevent the sideslip angle from exceeding unsafe

limits. *);

end ProvideYawEnvelopeProtection;

operation LimitAutoSideslipCommands is

components: ;

inputs: AutoSideslipCommand;

outputs: LimitedAutoSideslipCommand;

description: (*

Limits the autopilot control authority and protects against failures (in

particular hardover or oscillatory failures) in the autopilot. *);

end LimitAutoSideslipCommands;

(**** Pilot Yaw Interface, pp. 187-188 ****)

operation ConvertForceToDisplacement is

components: ;

inputs: SideslipForce, SideslipFeelForce;

outputs: SideslipCommandDispl;

39

description: (*
Receives the pilot force and feedback feel force and generates a

displacement. *);

end ConvertForceToDisplacement;

operation GenerateSideslipFeelForce is

components: ;

inputs: SideslipCommand;

outputs: SideslipFeelForce;

description: (*

Generates a force to feedback to the pilot which is an indication of the

commanded sideslip angle. *);

end GenerateSideslipFeelForce;

operation TranslateSideslipDisplCmd is

components: ;

inputs: SideslipCommandDispl;

outputs: SideslipCommand;

description: (*

Translates the displacement (rudder pedal) to a sideslip command. *);

end TranslateSideslipDisplCmd;

operation TranslateDirecTrimForceToCommand is

components: ;

inputs: DirectionalTrimForce;

outputs: DirectionalTrimCommand;

description: (*

Converts the physical displacement generated by the physical force

exerted by the pilot into a trim command for use by the FCS. *);

end TranslateDirecTrimForceToCommand;

end FlightControlSystemYawFunctions;

* Module ControlAerodynamicBraking from pp. 198-219, and AE diagrams

* pp. 218 - 219

module FlightControlSystem;

object FlightControlSystem is

components: FlightControlComputer, SpeedBrakeController,

HightLiftController, Displays, HightLIftSystem, RudderSystem,

SpoilerSystem, AileronSystem, ElevatorStabilizerSystem,

SidestickControllers, RudderPedals;

description: (*

The primary agent, along with Crew members, to execute _ight control

operations *);

end FlightControlSystem;

operation PerformAutoFlightSystemFunctions is

components: ;

inputs: ;

outputs: ;

description: (*

The AEAuto-FlightSystem ''Architectural Element'' *);

4O

end PerformAutoFlightSystemFunctions;

object class Computer is

components: ;

operations: ;

description: (* *);

end Computer;

object class Sensor is

components: ;

operations: ;

description: (* *);

end Sensor;

object class SurfaceActuator is

components: ;

operations: ;

description: (* *);

end SurfaceActuator;

object class Command is

components: HowActuated, AffectedAircraftComponents (* ... *) ;

description: (*

The high-level class of control commands that are generated by either

the crew or Bight control system. *);

end Command;

(***** Control System Signal Transmission (F.C.S.I), Pg. 199 *****)

object Communicant is

components: Computer I Sensor I SurfaceActuator;

operations: ;

description: (* *);

(* One of the classes of objects between which data communications take

place. *)

end Communicant;

object DataBus is

components: ;

operations: TransmitData: (Communicant, Communicant, DataBus) -> (boolean);

description: (* *);

end DataBus;

(***** Control System Computation Requirements (F.C.C.I), Pg. 223 *****)

var cml, cm2: Communicant;

db: DataBus;

axiom

forall (cml, cm2:Communicant, db: DataBus)

if TransmitData(cml, cm2, db)

then (db. Type = Electrical or db.Type = Optical) and

(db. Speed> MinimumDataCommSpeed);

end FlightControlSystem;

4]

References

1. Frincke, Deborah; Wolber, Dave; Fisher, Gene; Cohen Gerald: Requirements

Specification Language (RSL) and Supporting Tools. NASA Contractor Report 189700,

July 92.

2. McLees, R. E., and Cohen, G. C.: An Example of Requirements for Advanced Subsonic

Civil Transport (ASCT Flight Control System Using Structured Techniques. NASA Con-

tractor Report NAS 1-187526, October 1991.

42

